Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

cis-Tetracarbonylbis(tricyclohexylphosphine)molybdenum(0) and pentacarbonyl(tricyclohexylphosphine)molybdenum(0)

Jose E. Cortes-Figueroa,^a Madeline S. Leon-Velazquez,^a Johanna Ramos,^a Jerry P. Jasinski,^b David A. Keene,^b Jeffrey D. Zubkowski^c and Edward J. Valente^d*

^aOrganometallic Chemistry Research Laboratory, Department of Chemistry, University of Puerto Rico, Mayaguez, PR 00681, Puerto Rico, ^bDepartment of Chemistry, Keene State College, Keene, NH 03435-2001, USA, ^cDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and ^dDepartment of Chemistry, Mississippi College, Clinton, MS 39058-4036, USA Correspondence e-mail: valente@mc.edu

Received 30 May 2000 Accepted 2 October 2000

In the present redetermination of the complex cis-tetracarbonylbis(tricyclohexylphosphine)molybdenum(0), (I), $[Mo(C_{18}H_{33}P)_{2}(CO)_{4}]$ or cis-{ η^{1} -[P(C₆H₁₁)₃]₂}Mo(CO)₄, the Mo atom has a distorted octahedral geometry with a large P-Mo–P angle of 104.8 (1)°. A strong *trans* influence on the carbonyls in (I) is seen in a shortening of the Mo $-C$ and a lengthening of the $C-O$ distances opposite the phosphines compared with those that are *cis*. This influence is greatly diminished in the complex pentacarbonyl(tricyclohexylphosphine)molybdenum(0), (II), $[Mo(C_{18}H_{33}P)(CO)_{5}]$ or ${\eta}^1$ -[P(C₆H₁₁)₃]}Mo(CO)₅, the core of which has a slightly distorted C_{4v} geometry.

Comment

Tricyclohexylphoshine dissociates from cis - $\{\eta^1$ - $[P(cy)_3]_2\}$ tetracarbonylmolybdenum(0) (cy is cyclohexyl) to produce a mixture of $\{\eta^2\text{-}[P(cy)_3]_2\}$ tetracarbonylmolybdenum(0) and $[\eta^1\text{-}$ $P(cy)$ ₃]pentacarbonylmolybdenum(0) (Cortes-Figueroa et al.,

1997). Ligand dissociation from cis - $(\eta^1$ - $L)(\eta^1$ - $L')$ Mo(CO)₄ produces $(\eta^2-L')\text{Mo(CO)}_4$, for $L = P(cy)_3$, triphenylphosphine or piperidine and $L' = P(cy)$ ₃ or triphenylphosphine, where L

and L' have cone angles greater than 45° (Tolman, 1977). The lability of the $Mo-P(cy)$ ₃ bond in such complexes may arise, in part, from the ligand cone angle of 170° and may account for the difficulty in preparation of the analogous complex *cis-* $\{[\eta^1-P(cy)_3]_2\}W(CO)_4$ by Boyles *et al.* (1985). Rates of ligand dissociation reactions from cis - $(\eta^1$ - $L)(\eta^1$ - $L')$ Mo(CO)₄ also point to the type of metal ion and the size of the ligand as important kinetic controlling factors (Laboy et al., 1995; Cortes-Figueroa et al., 1997). As part of a systematic study testing the relationships between structure and reactivity in these complexes, the synthesis and structures of the title compounds, cis-tetracarbonylbis(tricyclohexylphosphine) molybdenum(0), (I), and pentacarbonyl(tricyclohexylphosphine)molybdenum(0), (II), are reported. The structure of (I) is a redetermination of that reported by Watson *et al.* (1994), which was based on a very limited data set.

The structures of (I) and (II) are shown in Figs. 1 and 2, respectively. In (I), the Mo atom has a considerably distorted octahedral coordination geometry, as indicated by the $P1$ Mo–P2 bond angle of 104.8 (1) $^{\circ}$ (ideal value 90 $^{\circ}$) and the molecular distortion from C_{2v} symmetry. This is accompanied by a contraction of the opposite $C2-Mo-C3$ angle to 84.2 (2)°, and of the adjacent P1 $-Mo$ –C3 and P2 $-Mo$ –C2 angles to 86.5 (2) and 84.8 (2) $^{\circ}$, respectively. The sterically crowded environment at the Mo atom is further indicated by the distortions of the equatorial *trans* bond angles for $P1$ $Mo-C2$ [169.9 (2)°], P2 – Mo – C3 [167.6 (2)°] and C4 – Mo – C1 [171.8 (3)°] from the 180° ideal. The Mo $-C_{ax}$ bond lengths, averaging 2.040 (8) \AA , are *trans* to each other and are significantly (about 10 s.u.'s) longer than the $Mo-C_{eq}$ distances, which average 1.924 (8) \AA and are both *trans* to P. Both $Mo-P$ bond distances are similar and average 2.655 (2) \AA , which is significantly longer than the average Mo-P distance in phosphine-pentacarbonyl-molybdenum complexes such as (II) [2.594 (1) Å], $[\eta^1$ -PPh₃]Mo(CO)₅

Figure 1

The molecular structure of complex (I) showing the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity.

[2.560 (1) Å; Cotton et al., 1981], $[\eta^1-P(CH_2CH_2CN)_3]$ - $Mo(CO)_{5}$ [2.506 (1) Å; Cotton *et al.*, 1981], and *trans*-{bis[η^{1} - $P(cy)_{3}$] $Mo(CO)_{4}$ [2.544 (1) Å; Alyea *et al.*, 1996]. The *trans* influence extends to the carbonyl groups in (I) , such that those opposite the shorter $Mo-P$ distances, $C2-O2$ and $C3-O3$, average 1.185 (8) Å, while those *cis* to P, C1 $-$ O1 and C4 $-$ O4, average $1.133(8)$ Å. This observation is consistent with the larger π -acceptor ability of carbonyls (Cotton & Wilkinson, 1988; Cortes-Figueroa et al., 1998).

Figure 2

The molecular structure of the major conformer of complex (II) showing the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity.

In the pentacarbonyl complex, (II), the Mo geometry is only slightly distorted from the octahedral ideal and is nearly $C_{4\nu}$. The *trans* influence is present in (II) but greatly diminished compared with (I). The $Mo-CS$ distance, *trans* to P and to the shorter $Mo-P$ distance mentioned above, is shorter [1.97 (1) \AA] than the average of the remaining Mo–C distances $[2.03 (1)$ \AA . At the carbonyl groups, however, the influence is very weak, with the *trans* $C5 - O5$ distance of 1.154 (6) \AA being larger but not statistically distinguishable from the other four [average 1.149 (12) \AA]. Disorder in one cyclohexyl ring, between alternate chair conformers, was modelled with the major conformer having an occupancy of 0.64 (1).

Experimental

Complex (I) was prepared from cis-[bis(piperidine)]tetracarbonylmolybdenum(0) following the procedure of Darensbourg & Kump (1978); a 2.5 mol excess of tricyclohexylphosphine to the piperidine complex was used, in dichloromethane. Light-yellow crystals of (I) were obtained by recrystallization from dichloromethane-methanol solution. Complex (II) was prepared by refluxing $Mo(CO)_{6}$ and $P(cy)$ ₃ in bis(2-methoxyethyl) ether under dinitrogen. Upon cooling to 277 K, colorless crystals of (II) formed in low yield.

Compound (I)

Crystal data

 $R_{\rm int} = 0.092$ $\theta_{\text{max}} = 27.51^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 32$ $l = -19 \rightarrow 19$ 3 standard reflections every 197 reflections frequency: 150 min intensity decay: 3.0 (3)%

H-atom parameters constrained $w = 1/[\sigma^2 (F_o^2) + (0.048P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.59 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.70$ e ${\rm \AA}^{-3}$

Data collection

Siemens P3 diffractometer ω scans Absorption correction: semi-zempirical via ψ scans (XEMP; Siemens, 1989) $T_{\text{min}} = 0.844, T_{\text{max}} = 0.978$ 12 628 measured reflections 9302 independent reflections 3635 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.080$ $S = 0.931$ 9302 reflections 424 parameters

Table 1

Selected geometric parameters (\mathring{A}, \degree) for (I).

Compound (II)

Crystal data

 $[Mo(C_{18}H_{33}P)(CO)_{5}]$ $M_r = 516.40$ Monoclinic, $P2_1/n$ $a = 11.785(3)$ Å $b = 16.760(7)$ Å $c = 12.779(4)$ Å $\beta = 92.15 (2)$ ° $V = 2522.3$ (14) \AA^3 $Z = 4$ $D_r = 1.360$ Mg m⁻³ Mo $K\alpha$ radiation Cell parameters from 42 reflections $\theta = 12-16^\circ$ $\mu = 0.612$ mm⁻¹ $T = 293(2)$ K Rod, colorless $0.40 \times 0.20 \times 0.18 \text{ mm}$ Data collection Siemens P3 diffractometer ω scans 4655 measured reflections 4435 independent reflections 2498 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.089$ $\theta_{\text{max}} = 25.01^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 19$ $l = -15 \rightarrow 15$ 3 standard reflections every 197 reflections frequency: 180 min intensity increase: 3.2 (4)%

Refinement

Table 2

Selected geometric parameters (\mathring{A}, \degree) for (II).

The H atoms of (I) and (II) were treated as riding, with $U_{iso}(H)$ = $1.2U_{eq}(C)$ and C—H distances in the range 0.97–0.98 A.

For both compounds, data collection: P3/PC Diffractometer Program (Siemens, 1989); cell refinement: P3/PC Diffractometer Program; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS93 (Sheldrick, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank the Office of Naval Research for support of instrumentation (EJV and JDZ), the National Science Foundation (HRD-9550705) and the Puerto Rico alliance for Minority Participation (PR-AMP).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1291). Services for accessing these data are described at the back of the journal.

References

Alyea, E. C., Ferguson, G. & Kannan, S. (1996). Acta Cryst. C52, 765-767.

- Boyles, M. L., Brown, D. V., Drake, D. A., Hostetler, C. K., Maves, C. K. & Mosbo, J. A. (1985). *Inorg. Chem.* **24**, 2136-3131.
- Cortes-Figueroa, J. E., Santiago, L., DeJesus, M. & Leon, M. (1997). J. Coord. Chem. 41, 249-259.
- Cortes-Figueroa, J. E., Zubkowski, J. D. & Valente, E. J. (1998). J. Chem. $Crvstallogr.$ $28, 217–220.$
- Cotton, F. A., Darensbourg, D. J. & Ilsley, W. H. (1981). Inorg. Chem. 20, 578-583.
- Cotton, F. A. & Wilkinson, G. (1988). Advanced Inorganic Chemistry, 5th ed., p. 1299. New York: Wiley-Interscience.
- Darensbourg, D. J. & Kump, R. L. (1978). Inorg. Chem. 17, 2680-2682.
- Laboy, O., Pares-Matos, E. & Cortes-Figueroa, J. E. (1995). J. Coord. Chem. 36, 273±287.
- Sheldrick, G. M. (1993). SHELXS93. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1989). XEMP (Release 4.0), P3/PC Diffractometer Program (Version 3.13) and XDISK (Version 3.11). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Watson, M., Woodward, S., Conole, G., Kessler, M. & Sykara, G. (1994). Polyhedron, 13, 2455-2458.