Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

cis-Tetracarbonylbis(tricyclohexylphosphine)molybdenum(0) and pentacarbonyl(tricyclohexylphosphine)molybdenum(0)

Jose E. Cortes-Figueroa,^a Madeline S. Leon-Velazquez,^a Johanna Ramos,^a Jerry P. Jasinski,^b David A. Keene,^b Jeffrey D. Zubkowski^c and Edward J. Valente^d*

^aOrganometallic Chemistry Research Laboratory, Department of Chemistry, University of Puerto Rico, Mayaguez, PR 00681, Puerto Rico, ^bDepartment of Chemistry, Keene State College, Keene, NH 03435-2001, USA, ^cDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and ^dDepartment of Chemistry, Mississippi College, Clinton, MS 39058-4036, USA Correspondence e-mail: valente@mc.edu

Received 30 May 2000 Accepted 2 October 2000

In the present redetermination of the complex *cis*-tetracarbonylbis(tricyclohexylphosphine)molybdenum(0), (I), $[Mo(C_{18}H_{33}P)_2(CO)_4]$ or *cis*- $\{\eta^1-[P(C_6H_{11})_3]_2\}Mo(CO)_4$, the Mo atom has a distorted octahedral geometry with a large P-Mo-P angle of 104.8 (1)°. A strong *trans* influence on the carbonyls in (I) is seen in a shortening of the Mo-C and a lengthening of the C-O distances opposite the phosphines compared with those that are *cis*. This influence is greatly diminished in the complex pentacarbonyl(tricyclohexylphosphine)molybdenum(0), (II), $[Mo(C_{18}H_{33}P)(CO)_5]$ or $\{\eta^1-[P(C_6H_{11})_3]\}Mo(CO)_5$, the core of which has a slightly distorted $C_{4\nu}$ geometry.

Comment

Tricyclohexylphoshine dissociates from $cis-{\eta^1-[P(cy)_3]_2}$ tetracarbonylmolybdenum(0) (cy is cyclohexyl) to produce a mixture of ${\eta^2-[P(cy)_3]_2}$ tetracarbonylmolybdenum(0) and $[\eta^1-$ P(cy)_3]pentacarbonylmolybdenum(0) (Cortes-Figueroa *et al.*,

1997). Ligand dissociation from $cis-(\eta^1-L)(\eta^1-L')Mo(CO)_4$ produces $(\eta^2-L')Mo(CO)_4$, for $L = P(cy)_3$, triphenylphosphine or piperidine and $L' = P(cy)_3$ or triphenylphosphine, where L and L' have cone angles greater than 45° (Tolman, 1977). The lability of the $Mo-P(cy)_3$ bond in such complexes may arise, in part, from the ligand cone angle of 170° and may account for the difficulty in preparation of the analogous complex cis- $\{[\eta^1-P(cy)_3]_2\}W(CO)_4$ by Boyles *et al.* (1985). Rates of ligand dissociation reactions from $cis(\eta^{1}-L)(\eta^{1}-L')MO(CO)_{4}$ also point to the type of metal ion and the size of the ligand as important kinetic controlling factors (Laboy et al., 1995; Cortes-Figueroa et al., 1997). As part of a systematic study testing the relationships between structure and reactivity in these complexes, the synthesis and structures of the title compounds, cis-tetracarbonylbis(tricyclohexylphosphine)and pentacarbonyl(tricyclohexylmolybdenum(0), (I), phosphine)molybdenum(0), (II), are reported. The structure of (I) is a redetermination of that reported by Watson et al. (1994), which was based on a very limited data set.

The structures of (I) and (II) are shown in Figs. 1 and 2, respectively. In (I), the Mo atom has a considerably distorted octahedral coordination geometry, as indicated by the P1-Mo-P2 bond angle of 104.8 (1) $^{\circ}$ (ideal value 90 $^{\circ}$) and the molecular distortion from $C_{2\nu}$ symmetry. This is accompanied by a contraction of the opposite C2-Mo-C3 angle to 84.2 (2)°, and of the adjacent P1-Mo-C3 and P2-Mo-C2angles to 86.5 (2) and 84.8 (2) $^{\circ}$, respectively. The sterically crowded environment at the Mo atom is further indicated by the distortions of the equatorial trans bond angles for P1-Mo-C2 [169.9 (2)°], P2-Mo-C3 [167.6 (2)°] and C4-Mo-C1 [171.8 (3)°] from the 180° ideal. The Mo $-C_{ax}$ bond lengths, averaging 2.040 (8) Å, are trans to each other and are significantly (about 10 s.u.'s) longer than the Mo-C_{eq} distances, which average 1.924 (8) Å and are both trans to P. Both Mo-P bond distances are similar and average 2.655(2) Å, which is significantly longer than the average Mo-P distance in phosphine-pentacarbonyl-molybdenum complexes such as (II) [2.594 (1) Å], $[\eta^1$ -PPh₃]Mo(CO)₅

Figure 1

The molecular structure of complex (I) showing the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity.

metal-organic compounds

 $[2.560 (1) \text{ Å}; \text{ Cotton } et al., 1981], [\eta^1-P(CH_2CH_2CN)_3]$ $Mo(CO)_5$ [2.506 (1) Å; Cotton *et al.*, 1981], and *trans*-{bis[η^1 - $P(cy)_{3}$ [2.544 (1) Å; Alyea *et al.*, 1996]. The *trans* influence extends to the carbonyl groups in (I), such that those opposite the shorter Mo-P distances, C2-O2 and C3-O3, average 1.185 (8) Å, while those *cis* to P, C1-O1 and C4-O4, average 1.133 (8) Å. This observation is consistent with the larger π -acceptor ability of carbonyls (Cotton & Wilkinson, 1988; Cortes-Figueroa et al., 1998).

Figure 2

The molecular structure of the major conformer of complex (II) showing the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity.

In the pentacarbonyl complex, (II), the Mo geometry is only slightly distorted from the octahedral ideal and is nearly $C_{4\nu}$. The trans influence is present in (II) but greatly diminished compared with (I). The Mo-C5 distance, *trans* to P and to the shorter Mo-P distance mentioned above, is shorter [1.97(1) Å] than the average of the remaining Mo-C distances [2.03 (1) Å]. At the carbonyl groups, however, the influence is very weak, with the trans C5-O5 distance of 1.154 (6) Å being larger but not statistically distinguishable from the other four [average 1.149 (12) Å]. Disorder in one cyclohexyl ring, between alternate chair conformers, was modelled with the major conformer having an occupancy of 0.64 (1).

Experimental

Complex (I) was prepared from cis-[bis(piperidine)]tetracarbonylmolybdenum(0) following the procedure of Darensbourg & Kump (1978); a 2.5 mol excess of tricyclohexylphosphine to the piperidine complex was used, in dichloromethane. Light-yellow crystals of (I) were obtained by recrystallization from dichloromethane-methanol solution. Complex (II) was prepared by refluxing Mo(CO)₆ and $P(cy)_3$ in bis(2-methoxyethyl) ether under dinitrogen. Upon cooling to 277 K, colorless crystals of (II) formed in low yield.

Compound (I)

Crystal data

$[Mo(C_{18}H_{33}P)_2(CO)_4]$	$D_x = 1.260 \text{ Mg m}^{-3}$
$M_r = 768.81$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 50
a = 10.856 (3) Å	reflections
b = 25.323 (8) Å	$\theta = 7.5 - 18.0^{\circ}$
c = 14.795 (7) Å	$\mu = 0.439 \text{ mm}^{-1}$
$\beta = 94.68 \ (3)^{\circ}$	T = 293 (2) K
V = 4054 (3) Å ³	Prism, light yellow
Z = 4	$0.40 \times 0.20 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.092$

 $\theta_{\rm max} = 27.51^\circ$

 $h = 0 \rightarrow 14$

 $k = 0 \rightarrow 32$

 $l = -19 \rightarrow 19$

3 standard reflections

every 197 reflections

intensity decay: 3.0 (3)%

H-atom parameters constrained

 $w = 1/[\sigma^{\bar{2}}(F_o^2) + (0.048P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.59 \; {\rm e} \; {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

frequency: 150 min

Data collection

Siemens P3 diffractometer ω scans Absorption correction: semi-zempirical via ψ scans (XEMP; Siemens, 1989) $T_{\rm min}=0.844,\;T_{\rm max}=0.978$ 12 628 measured reflections 9302 independent reflections 3635 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.080$ S = 0.9319302 reflections 424 parameters

Table 1

Selected geometric parameters (Å, $^{\circ}$) for (I).

Mo-C2	1.921 (6)	Mo-P1	2.6569 (17)
Mo-C3	1.927 (6)	O1-C1	1.123 (6)
Mo-C1	2.039 (5)	O2-C2	1.211 (6)
Mo-C4	2.042 (6)	O3-C3	1.159 (6)
Mo-P2	2.6529 (16)	O4-C4	1.143 (6)
$C^2 - M_0 - C^3$	84.2 (2)	$C1 - M_0 - P^2$	97 26 (16)
C2-Mo-C1	85.8 (2)	C4-Mo-P2	87.27 (16)
C3-Mo-C1	87.7 (2)	C2-Mo-P1	169.87 (16)
C2-Mo-C4	87.8 (2)	C3-Mo-P1	86.47 (17)
C3-Mo-C4	86.6 (2)	C1-Mo-P1	89.77 (16)
C1-Mo-C4	171.8 (3)	C4-Mo-P1	95.73 (16)
C2-Mo-P2	84.81 (17)	P2-Mo-P1	104.81 (5)
C3-Mo-P2	167.64 (16)		

Compound (II)

Crystal data

$[Mo(C_{18}H_{33}P)(CO)_5]$	$D_x = 1.360 \text{ Mg m}^{-3}$	
$M_r = 516.40$	Mo $K\alpha$ radiation	
Monoclinic, P_2/n	Cell parameters from 42	
a = 11.785 (3) Å	reflections	
b = 16.760 (7) Å	$\theta = 12.16^\circ$	
$\begin{aligned} b &= 10.700 \ (7) \ \text{A} \\ c &= 12.779 \ (4) \ \text{\AA} \\ \beta &= 92.15 \ (2)^{\circ} \\ V &= 2522.3 \ (14) \ \text{\AA}^3 \\ Z &= 4 \end{aligned}$	$\mu = 0.612 \text{ mm}^{-1}$ T = 293 (2) K Rod, colorless $0.40 \times 0.20 \times 0.18 \text{ mm}$	
Data collection		
Siemens <i>P</i> 3 diffractometer	$h = 0 \rightarrow 14$	
ω scans	$k = 0 \rightarrow 19$	
4655 measured reflections	$l = -15 \rightarrow 15$	
4435 independent reflections	3 standard reflections	
2498 reflections with $I > 2\sigma(I)$	every 197 reflections	
$R_{int} = 0.089$	frequency: 180 min	
$\theta_{max} = 25.01^{\circ}$	intensity increase: 3.2 (4)%	

Refinement

H-atom parameters constrained
$w = 1/[\sigma^2 (F_o^2) + (0.0499P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 2

Selected geometric parameters (Å, °) for (II).

Mo-C5	1.972 (6)	Mo-P	2.5938 (14)
Mo-C3	2.009 (7)	O1-C1	1.136 (6)
Mo-C4	2.020 (6)	O2-C2	1.140 (6)
Mo-C2	2.038 (7)	O3-C3	1.163 (6)
Mo-C1	2.046 (7)	O4-C4	1.151 (6)
C5 Ma C3	86 5 (2)	C4 Ma C1	01.1.(2)
C5 - M0 - C3	80.3 (2) 86.1 (2)	C4 = M0 = C1	91.1 (2)
C5-M0-C4	80.1 (2)	C2-M0-C1	1/0.2 (2)
C3-Mo-C4	172.6 (2)	C5-Mo-P	177.94 (18)
C5-Mo-C2	89.5 (2)	C3-Mo-P	95.38 (16)
C3-Mo-C2	87.9 (2)	C4-Mo-P	92.04 (15)
C4-Mo-C2	92.1 (2)	C2-Mo-P	91.50 (18)
C5-Mo-C1	88.6 (2)	C1-Mo-P	90.52 (15)
C3-Mo-C1	88.6 (2)		

The H atoms of (I) and (II) were treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and C-H distances in the range 0.97–0.98 Å.

For both compounds, data collection: *P3/PC Diffractometer Program* (Siemens, 1989); cell refinement: *P3/PC Diffractometer Program*; data reduction: *XDISK* (Siemens, 1989); program(s) used to solve structure: *SHELXS*93 (Sheldrick, 1993); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97. We thank the Office of Naval Research for support of instrumentation (EJV and JDZ), the National Science Foundation (HRD-9550705) and the Puerto Rico alliance for Minority Participation (PR-AMP).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1291). Services for accessing these data are described at the back of the journal.

References

Alyea, E. C., Ferguson, G. & Kannan, S. (1996). Acta Cryst. C52, 765-767.

- Boyles, M. L., Brown, D. V., Drake, D. A., Hostetler, C. K., Maves, C. K. & Mosbo, J. A. (1985). *Inorg. Chem.* 24, 2136–3131.
- Cortes-Figueroa, J. E., Santiago, L., DeJesus, M. & Leon, M. (1997). J. Coord. Chem. 41, 249–259.
 Cortes-Figueroa, J. E., Zubkowski, J. D. & Valente, E. J. (1998). J. Chem.
- Crystallogr. 28, 217–220.
- Cotton, F. A., Darensbourg, D. J. & Ilsley, W. H. (1981). *Inorg. Chem.* **20**, 578–583.
- Cotton, F. A. & Wilkinson, G. (1988). Advanced Inorganic Chemistry, 5th ed., p. 1299. New York: Wiley-Interscience.
- Darensbourg, D. J. & Kump, R. L. (1978). Inorg. Chem. 17, 2680-2682.
- Laboy, O., Pares-Matos, E. & Cortes-Figueroa, J. E. (1995). J. Coord. Chem. 36, 273–287.
- Sheldrick, G. M. (1993). SHELXS93. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1989). XEMP (Release 4.0), P3/PC Diffractometer Program (Version 3.13) and XDISK (Version 3.11). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Watson, M., Woodward, S., Conole, G., Kessler, M. & Sykara, G. (1994). Polyhedron, 13, 2455–2458.